Boosting methods for object categorization

Results: 106



#Item
71Boosting / Statistical classification / Classification rule / Artificial neuron / Boosting methods for object categorization / Margin classifier / Machine learning / Ensemble learning / AdaBoost

Journal of Machine Learning Research[removed] Published 2/08 Response to Mease and Wyner, Evidence Contrary to the Statistical View of Boosting, JMLR 9:131–156, 2008: And Yet It Overfits

Add to Reading List

Source URL: www.stat.berkeley.edu

Language: English - Date: 2009-03-21 03:28:48
72Face recognition / Pedestrian detection / Optical flow / Support vector machine / Boosting methods for object categorization / Computer vision / Surveillance / Face detection

PKU@TRECVID2009: Single-Actor and Pair-Activity Event Detection in Surveillance Video Zhipeng Hu a, Guangnan Ye b, Guochen Jia a, Xibin Chen b, Qiong Hu c, Kaihua Jiang b, Yaowei Wang a, d, Lei Qing c, Yonghong Tian a, X

Add to Reading List

Source URL: www-nlpir.nist.gov

Language: English - Date: 2010-04-14 09:58:22
73Statistical classification / Learning / Parts of speech / Support vector machine / Classifier / Supervised learning / Boosting methods for object categorization / Random subspace method / Machine learning / Statistics / Artificial intelligence

TZI Bremen - Trecvid 2006 high level feature extraction A. Bruckmann M. Buczilowski B. Lerbs D. Gao

Add to Reading List

Source URL: www-nlpir.nist.gov

Language: English - Date: 2006-12-07 11:18:17
74Learning / Statistical classification / Machine learning / Computer vision / AdaBoost / Support vector machine / Boosting / Feature / Boosting methods for object categorization / Artificial intelligence / Statistics / Ensemble learning

TRECVID 2007 by the Brno Group High Level Feature Extraction & Shot Boundary Detection Adam Herout, Vítězslav Beran, Michal Hradiš, Igor Potúček, Pavel Zemčík, Petr Chmelař

Add to Reading List

Source URL: www-nlpir.nist.gov

Language: English - Date: 2008-03-03 10:55:06
75Learning / Machine learning / Statistical classification / AdaBoost / Supervised learning / Boosting / Classifier / Support vector machine / Boosting methods for object categorization / Ensemble learning / Statistics / Artificial intelligence

Multiple Component Learning for Object Detection Piotr Doll´ ar1,2 Boris Babenko2 Serge Belongie1,2 Pietro Perona1 Zhuowen Tu3 1

Add to Reading List

Source URL: authors.library.caltech.edu

Language: English - Date: 2014-08-22 16:26:50
76Artificial intelligence / Learning / Parts of speech / Ensemble learning / Classifier / Linear classifier / Binary classification / AdaBoost / Boosting methods for object categorization / Statistics / Statistical classification / Machine learning

BERG, BELHUMEUR: TOM-VS-PETE CLASSIFIERS AND IDENTITY-PRESERVING ALIGNMENT 1 Tom-vs-Pete Classifiers and Identity-Preserving Alignment for Face Verification

Add to Reading List

Source URL: thomasberg.org

Language: English - Date: 2013-10-20 17:34:54
77Face detection / Algorithm / Segmentation / Eigenface / Template matching / Pose / Boosting methods for object categorization / FERET / Computer vision / Face recognition / Image processing

User Oriented Language Model for Face Detection Daesik Jang Dept. of Computer Information Engineering Kunsan National University, Gunsan, South Korea [removed]

Add to Reading List

Source URL: hct.ece.ubc.ca

Language: English - Date: 2011-11-24 20:11:06
78Search algorithms / Statistical classification / K-nearest neighbor algorithm / Ensemble learning / Classifier / Word-sense disambiguation / Nearest neighbor search / AdaBoost / Boosting methods for object categorization / Machine learning / Artificial intelligence / Information science

Superlinear Parallelization of k-Nearest Neighbor Retrieval Antal van den Bosch Ko van der Sloot

Add to Reading List

Source URL: ilk.uvt.nl

Language: English - Date: 2010-04-09 10:59:04
79Artificial intelligence / Object recognition / Shape context / Feature / Statistical classification / Scale-invariant feature transform / Boosting methods for object categorization / Computer vision / Vision / Imaging

Sign Classification using Local and Meta-Features Marwan A. Mattar, Allen R. Hanson, and Erik G. Learned-Miller Computer Vision Laboratory Department of Computer Science University of Massachusetts Amherst, MA[removed]USA

Add to Reading List

Source URL: vis-www.cs.umass.edu

Language: English - Date: 2008-01-02 15:36:22
80Machine learning / Parts of speech / CAPTCHA / Classifier / Support vector machine / Confusion matrix / Boosting methods for object categorization / Statistics / Statistical classification / Artificial intelligence

Machine Learning Attacks Against the Asirra CAPTCHA Philippe Golle Palo Alto Research Center Palo Alto, CA 94304, USA

Add to Reading List

Source URL: xenon.stanford.edu

Language: English - Date: 2008-08-05 17:59:45
UPDATE